Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.572
Filtrar
2.
Int J Biol Macromol ; 265(Pt 1): 130642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460644

RESUMO

How selectively increase blood-tumor barrier (BTB) permeability is crucial to enhance the delivery of chemotherapeutic agents to brain tumor tissues. In this study, we established in vitro models of the blood-brain barrier (BBB) and BTB using endothelial cells (ECs) co-cultured with human astrocytes (AECs) and glioma cells (GECs), respectively. The findings revealed high expressions of the RNA-binding protein FXR1 and SNORD63 in GECs, where FXR1 was found to bind and stabilize SNORD63. Knockdown of FXR1 resulted in decreased expression of tight-junction-related proteins and increased BTB permeability by down-regulating SNORD63. SNORD63 played a role in mediating the 2'-O-methylation modification of POU6F1 mRNA, leading to the downregulation of POU6F1 protein expression. POU6F1 showed low expression in GECs and acted as a transcription factor to regulate BTB permeability by binding to the promoter regions of ZO-1, occludin, and claudin-5 mRNAs and negatively regulating their expressions. Finally, the targeted regulation of FXR1, SNORD63, and POU6F1 expressions, individually or in combination, effectively enhanced doxorubicin passage through the BTB and induced apoptosis in glioma cells. This study aims to elucidate the underlying mechanism of the FXR1/SNORD63/POU6F1 axis in regulating BTB permeability, offering a novel strategy to improve the efficacy of glioma chemotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Hematológicas , MicroRNAs , Fatores do Domínio POU , Humanos , MicroRNAs/genética , Células Endoteliais/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , Barreira Hematoencefálica/metabolismo , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Neoplasias Hematológicas/patologia , Permeabilidade , Metilação , Permeabilidade Capilar , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473775

RESUMO

This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias Hematológicas/patologia , Biologia , Microambiente Tumoral
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474011

RESUMO

Homeobox genes encode developmental transcription factors regulating tissue-specific differentiation processes and drive cancerogenesis when deregulated. Dendritic cells (DCs) are myeloid immune cells occurring as two types, either conventional or plasmacytoid DCs. Recently, we showed that the expression of NKL-subclass homeobox gene VENTX is restricted to conventional DCs, regulating developmental genes. Here, we identified and investigated homeobox genes specifically expressed in plasmacytoid DCs (pDCs) and derived blastic plasmacytoid dendritic cell neoplasm (BPDCN). We analyzed gene expression data, performed RQ-PCR, protein analyses by Western blot and immuno-cytology, siRNA-mediated knockdown assays and subsequent RNA-sequencing and live-cell imaging. Screening of public gene expression data revealed restricted activity of the CUT-class homeobox gene CUX2 in pDCs. An extended analysis of this homeobox gene class in myelopoiesis showed that additional CUX2 activity was restricted to myeloid progenitors, while BPDCN patients aberrantly expressed ONECUT2, which remained silent in the complete myeloid compartment. ONECUT2 expressing BPDCN cell line CAL-1 served as a model to investigate its regulation and oncogenic activity. The ONECUT2 locus at 18q21 was duplicated and activated by IRF4, AUTS2 and TNF-signaling and repressed by BMP4-, TGFb- and IL13-signalling. Functional analyses of ONECUT2 revealed the inhibition of pDC differentiation and of CDKN1C and CASP1 expression, while SMAD3 and EPAS1 were activated. EPAS1 in turn enhanced survival under hypoxic conditions which thus may support dendritic tumor cells residing in hypoxic skin lesions. Collectively, we revealed physiological and aberrant activities of CUT-class homeobox genes in myelopoiesis including pDCs and in BPDCN, respectively. Our data may aid in the diagnosis of BPDCN patients and reveal novel therapeutic targets for this fatal malignancy.


Assuntos
Genes Homeobox , Neoplasias Hematológicas , Humanos , Diferenciação Celular , Linhagem Celular , Células Mieloides/metabolismo , Células Dendríticas/metabolismo , Neoplasias Hematológicas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética
5.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338733

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic cancer originating from the malignant transformation of plasmacytoid dendritic cell precursors. This malignancy progresses rapidly, with frequent relapses and a poor overall survival rate, underscoring the urgent need for effective treatments. However, diagnosing and treating BPDCN have historically been challenging due to its rarity and the lack of standardized approaches. The recognition of BPDCN as a distinct disease entity is recent, and standardized treatment protocols are yet to be established. Traditionally, conventional chemotherapy and stem cell transplantation have been the primary methods for treating BPDCN patients. Advances in immunophenotyping and molecular profiling have identified potential therapeutic targets, leading to a shift toward CD123-targeted immunotherapies in both clinical and research settings. Ongoing developments with SL-401, IMGN632, CD123 chimeric antigen receptor (CAR) T-cells, and bispecific antibodies (BsAb) show promising advancements. However, the therapeutic effectiveness of CD123-targeting treatments needs improvement through innovative approaches and combinations of treatments with other anti-leukemic drugs. The exploration of combinations such as CD123-targeted immunotherapies with azacitidine and venetoclax is suggested to enhance antineoplastic responses and improve survival rates in BPDCN patients. In conclusion, this multifaceted approach offers hope for more effective and tailored therapeutic interventions against this challenging hematologic malignancy.


Assuntos
Neoplasias Hematológicas , Subunidade alfa de Receptor de Interleucina-3 , Transtornos Mieloproliferativos , Humanos , Células Dendríticas , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Subunidade alfa de Receptor de Interleucina-3/efeitos dos fármacos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Transplante de Células-Tronco
6.
JCO Glob Oncol ; 10: e2300292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301183

RESUMO

PURPOSE: Febrile neutropenia (FN) is a serious complication in hematologic malignancies, and lung infiltrates (LIs) remain a significant concern. An accurate microbiological diagnosis is crucial but difficult to establish. To address this, we analyzed the utility of a standardized method for performing bronchoalveolar lavage (BAL) along with a two-step strategy for the analysis of BAL fluid. PATIENTS AND METHODS: This prospective observational study was conducted at a tertiary cancer center from November 2018 to June 2020. Patients age 15 years and older with confirmed leukemia or lymphomas undergoing chemotherapy, with presence of FN, and LIs observed on imaging were enrolled. RESULTS: Among the 122 enrolled patients, successful BAL was performed in 83.6% of cases. The study used a two-step analysis of BAL fluid, resulting in a diagnostic yield of 74.5%. Furthermore, antimicrobial therapy was modified in 63.9% of patients on the basis of BAL reports, and this population demonstrated a higher response rate (63% v 45%; P = .063). CONCLUSION: Our study demonstrates that a two-step BAL fluid analysis is safe and clinically beneficial to establish an accurate microbiological diagnosis. Given the crucial impact of diagnostic delays on mortality in hematologic malignancy patients with FN, early BAL studies should be performed to enable prompt and specific diagnosis, allowing for appropriate treatment modifications.


Assuntos
Neutropenia Febril , Neoplasias Hematológicas , Leucemia , Linfoma , Adolescente , Humanos , Líquido da Lavagem Broncoalveolar/microbiologia , Neutropenia Febril/diagnóstico , Neutropenia Febril/tratamento farmacológico , Neutropenia Febril/etiologia , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/microbiologia , Neoplasias Hematológicas/patologia , Leucemia/complicações , Leucemia/patologia , Pulmão/microbiologia , Pulmão/patologia , Linfoma/complicações , Linfoma/diagnóstico , Linfoma/tratamento farmacológico , Estudos Prospectivos
7.
Cell Mol Life Sci ; 81(1): 78, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334807

RESUMO

Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Estudos Prospectivos , Qualidade de Vida , Neoplasias Hematológicas/patologia , Receptores Citoplasmáticos e Nucleares
8.
PLoS One ; 19(2): e0289904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412186

RESUMO

Proteasome inhibitors such as Bortezomib represent an established type of targeted treatment for several types of hematological malignancies, including multiple myeloma, Waldenstrom's macroglobulinemia, and mantle cell lymphoma, based on the cancer cell's susceptibility to impairment of the proteasome-ubiquitin system. However, a major problem limiting their efficacy is the emergence of resistance. Their application to solid tumors is currently being studied, while simultaneously, a wide spectrum of hematological cancers, such as Myelodysplastic Syndromes show minimal or no response to Bortezomib treatment. In this study, we utilize the prostate cancer cell line DU-145 to establish a model of Bortezomib resistance, studying the underlying mechanisms. Evaluating the resulting resistant cell line, we observed restoration of proteasome chymotrypsin-like activity, regardless of drug presence, an induction of pro-survival pathways, and the substitution of the Ubiquitin-Proteasome System role in proteostasis by induction of autophagy. Finally, an estimation of the oxidative condition of the cells indicated that the resistant clones reduce the generation of reactive oxygen species induced by Bortezomib to levels even lower than those induced in non-resistant cells. Our findings highlight the role of autophagy and oxidative stress regulation in Bortezomib resistance and elucidate key proteins of signaling pathways as potential pharmaceutical targets, which could increase the efficiency of proteasome-targeting therapies, thus expanding the group of molecular targets for neoplastic disorders.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Mieloma Múltiplo , Neoplasias da Próstata , Humanos , Adulto , Masculino , Bortezomib/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Neoplasias Hematológicas/patologia , Neoplasias da Próstata/tratamento farmacológico , Estresse Oxidativo , Autofagia , Ubiquitinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
9.
Mod Pathol ; 37(4): 100441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309432

RESUMO

We review B-cell neoplasms in the 5th edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5). The revised classification is based on a multidisciplinary approach including input from pathologists, clinicians, and other experts. The WHO-HEM5 follows a hierarchical structure allowing the use of family (class)-level definitions when defining diagnostic criteria are partially met or a complete investigational workup is not possible. Disease types and subtypes have expanded compared with the WHO revised 4th edition (WHO-HEM4R), mainly because of the expansion in genomic knowledge of these diseases. In this review, we focus on highlighting changes and updates in the classification of B-cell lymphomas, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of B-cell lymphomas in routine practice.


Assuntos
Neoplasias Hematológicas , Linfoma de Células B , Humanos , Linfoma de Células B/patologia , Organização Mundial da Saúde , Patologistas , Neoplasias Hematológicas/patologia
10.
Semin Hematol ; 61(1): 61-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38311514

RESUMO

Clonal hematopoiesis (CH) is an entity hallmarked by skewed hematopoiesis with persistent overrepresentation of cells from a common stem/progenitor lineage harboring single-nucleotide variants and/or insertions/deletions. CH is a common and age-related phenomenon that is associated with an increased risk of hematological malignancies, cardiovascular disease, and all-cause mortality. While CH is a term of the hematological aspect, there exists a complex interaction with other organ systems, especially the cardiovascular system. The strongest factor in the development of CH is aging, however, other multiple factors also affect the development of CH including lifestyle-related factors and co-morbid diseases. In recent years, germline genetic factors have been linked to CH risk. In this review, we synthesize what is currently known about how genetic variation affects the risk of CH, how this genetic architecture intersects with myeloid neoplasms, and future prospects for CH.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Humanos , Hematopoiese Clonal/genética , Mutação , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Hematopoese/genética , Células Germinativas/patologia
12.
Histopathology ; 84(5): 837-846, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38213281

RESUMO

AIMS: The discovery of somatic genetic alterations established many histiocytic disorders as haematologic neoplasms. We aimed to investigate the demographic characteristics and additional haematologic cancers of patients diagnosed with histiocytic disorders in The Netherlands. METHODS AND RESULTS: We retrieved data on histiocytosis patients from the Dutch Nationwide Pathology Databank (Palga). During 1993 to 2022, more than 4000 patients with a pathologist-assigned diagnosis of a histiocytic disorder were registered in Palga. Xanthogranulomas were the most common subtype, challenging the prevailing assumption that Langerhans cell histiocytosis (LCH) is the most common histiocytic disorder. LCH and juvenile xanthogranuloma (JXG) had a peak incidence in the first years of life; males were overrepresented among all histiocytosis subgroups. 118 patients had a histiocytic disorder and an additional haematologic malignancy, including 107 (91%) adults at the time of histiocytosis diagnosis. In 16/118 patients, both entities had been analysed for the same genetic alteration(s). In 11 of these 16 patients, identical genetic alterations had been detected in both haematologic neoplasms. This included two patients with PAX5 p.P80R mutated B cell acute lymphoblastic leukaemia and secondary histiocytic sarcoma, further supporting that PAX5 alterations may predispose (precursor) B cells to differentiate into the myeloid lineage. All 4/11 patients with myeloid neoplasms as their additional haematologic malignancy had shared N/KRAS mutations. CONCLUSIONS: This population-based study highlights the frequency of xanthogranulomas. Furthermore, our data add to the growing evidence supporting clonal relationships between histiocytic/dendritic cell neoplasms and additional myeloid or lymphoid malignancies. Particularly adult histiocytosis patients should be carefully evaluated for the development of these associated haematologic cancers.


Assuntos
Neoplasias Hematológicas , Histiocitose de Células de Langerhans , Adulto , Masculino , Humanos , Histiocitose de Células de Langerhans/epidemiologia , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/patologia , Histiócitos/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Células Dendríticas/patologia , Demografia
14.
Arch Pharm (Weinheim) ; 357(4): e2300516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263717

RESUMO

PIM2, part of the PIM kinase family along with PIM1 and PIM3, is often overexpressed in hematologic cancers, fueling tumor growth. Despite its significance, there are no approved drugs targeting it. In response to this challenge, we devised a thorough virtual screening workflow for discovering novel PIM2 inhibitors. Our process includes molecular docking and diverse scoring methods like molecular mechanics generalized born surface area, XGBOOST, and DeepDock to rank potential inhibitors by binding affinities and interaction potential. Ten compounds were selected and subjected to an adequate evaluation of their biological activity. Compound 2 emerged as the most potent inhibitor with an IC50 of approximately 135.7 nM. It also displayed significant activity against various hematological cancers, including acute myeloid leukemia, mantle cell lymphoma, and anaplastic large cell lymphoma (ALCL). Molecular dynamics simulations elucidated the binding mode of compound 2 with PIM2, offering insights for drug development. These results highlight the reliability and efficacy of our virtual screening workflow, promising new drugs for hematologic cancers, notably ALCL.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Adulto , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Detecção Precoce de Câncer , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases
16.
Blood Adv ; 8(2): 337-342, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38052048

RESUMO

ABSTRACT: Chimeric antigen receptor (CAR) T-cell therapies have shown significant benefits in the treatment of hematologic malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL) and B-cell lymphoma. Despite the therapeutic advances offered by these innovative treatments, failures are still observed in 15% to 40% of patients with B-ALL and >50% of patients with B-cell lymphoma. Several hypotheses have emerged including CD19-negative or -positive relapses, low CAR T-cell activation and/or expansion in vivo, or T-cell exhaustion. To date, in the European Union, CAR T cells granted with marketing authorization are autologous and thus associated with a strong heterogeneity between products. Indeed, the manufacturing of a single batch requires cellular starting material collection by apheresis for each patient, with variable cellular composition, and then challenging pharmaceutical companies to standardize as much as possible the production process. In addition, these cost and time-consuming therapies are associated with a risk of manufacturing failure reaching 25%. Thus, there is a growing need to identify early risk factors of unsuccessful production and/or therapeutic escape. Quality of the apheresis product, pathology progression, as well as previous treatments have been reported as predictive factors of the variability in clinical response. The aim of this review is to report and discuss predictive factors that could help to anticipate the manufacturing success and clinical response.


Assuntos
Neoplasias Hematológicas , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patologia , Linfoma de Células B/patologia
17.
Hematol Oncol ; 42(1): e3234, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846131

RESUMO

Tagraxofusp (or SL-401) is a recombinant molecule composed of human interleukin-3 that binds CD123 on neoplastic cells fused to a truncated diphtheria toxin (DT). Tagraxofusp's most significant success has come from studies involving patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN), an aggressive disease that is usually refractory to conventional chemotherapy. Tagraxofusp had an acceptable safety profile and high efficacy in early phase I/II studies on patients with BPDCN. Another phase II study confirmed the good response rates, resulting in Food and Drugs Administration and European Medicine Agency approval of tagraxofusp for the treatment of BPDCN. Considering its high efficacy and its manageable safety profile, tagraxofusp has been suddenly explored in other myeloid malignancies with high expression of cell surface CD123, both in monotherapy or combination strategies. The triplet tagraxofusp-azacytidine-venetoclax appears to be of particular interest among these combinations. Furthermore, combination strategies may be used to overcome tagraxofusp resistance. The downregulation of DPH1 (diphthamide biosynthesis 1), the enzyme responsible for the conversion of histidine 715 on eEF2 to diphthamide, which is then the direct target of ADP ribosylation DT, is typically associated with this resistance phenomenon. It has been discovered that azacitidine can reverse DHP1 expression and restore sensitivity to tagraxofusp. In conclusion, the success of tagraxofusp in BPDCN paved the way for its application even in other CD123-positive malignancies. Nowadays, several ongoing trials are exploring the use of tagraxofusp in different myeloid neoplasms. This review aims to summarize the actual role of tagraxofusp in BPDCN and other CD123-positive myeloid malignancies.


Assuntos
Neoplasias Hematológicas , Transtornos Mieloproliferativos , Proteínas Recombinantes de Fusão , Neoplasias Cutâneas , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Subunidade alfa de Receptor de Interleucina-3/uso terapêutico , Células Dendríticas/patologia , Azacitidina/uso terapêutico , Transtornos Mieloproliferativos/patologia , Doença Aguda , Neoplasias Cutâneas/patologia , Neoplasias Hematológicas/patologia , Ensaios Clínicos Fase II como Assunto
18.
Pathobiology ; 91(1): 30-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37311434

RESUMO

Pediatric hematologic malignancies often show genetic features distinct from their adult counterparts, which reflect the differences in their pathogenesis. Advances in the molecular diagnostics including the widespread use of next-generation sequencing technology have revolutionized the diagnostic workup for hematologic disorders and led to the identification of new disease subgroups as well as prognostic information that impacts the clinical treatment. The increasing recognition of the importance of germline predisposition in various hematologic malignancies also shapes the disease models and management. Although germline predisposition variants can occur in patients with myelodysplastic syndrome/neoplasm (MDS) of all ages, the frequency is highest in the pediatric patient population. Therefore, evaluation for germline predisposition in the pediatric group can have significant clinical impact. This review discusses the recent advances in juvenile myelomonocytic leukemia, pediatric acute myeloid leukemia, B-lymphoblastic leukemia/lymphoma, and pediatric MDS. This review also includes a brief discussion of the updated classifications from the International Consensus Classification (ICC) and the 5th edition World Health Organization (WHO) classification regarding these disease entities.


Assuntos
Neoplasias Hematológicas , Síndromes Mielodisplásicas , Adulto , Humanos , Criança , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Genótipo , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala
19.
Mod Pathol ; 37(1): 100352, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839675

RESUMO

In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Humanos , Medula Óssea/patologia , Células Dendríticas/metabolismo , Mutação , Leucemia Mieloide Aguda/patologia , Neoplasias Hematológicas/patologia , Neoplasias Cutâneas/patologia , Transtornos Mieloproliferativos/patologia , Proteínas Nucleares/genética
20.
J Cutan Pathol ; 51(3): 221-225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088468

RESUMO

Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic neoplasms resulting from mutations in stem cells. They carry a risk of transformation to acute myeloid leukemia. Cutaneous manifestations of MDS, including myelodysplasia cutis or infiltration by MDS tumor cells, are rare, but significantly associated with increased risk of progression to high-grade myeloid tumors. The clinical and histopathologic differential diagnosis for myelodysplasia cutis includes interstitial granulomatous dermatitis (IGD), a reactive granulomatous dermatitis (RGD) associated with systemic diseases including rheumatologic diseases, and hematologic malignancy like MDS. We report a patient with MDS who presented with myelodysplasia cutis masquerading as IGD both in a clinical and histopathological manner.


Assuntos
Dermatite , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Pele/patologia , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genética , Mutação , Neoplasias Hematológicas/patologia , Dermatite/diagnóstico , Dermatite/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...